LA-UR-21-31392 Approved for public release; distribution is unlimited. Title: QA Testing of Si Diodes Author(s): Dowd, James Franklyn Intended for: Report Issued: 2021-11-17 # **QA Testing of Si Diodes** Jim Dowd Nov 8, 2021 ## **Dead Layer** Electrically non-responsive region outside of depletion region - Concerns about large dead layers in poor quality diodes - Unpolished backs - State of dead layer unknown - Large dead layers reduce energy resolution of detector - Energy loss is not measurable for particles with unknown energies - Stacked diode configuration compounds uncertainty - Determine bias voltage needed for full depletion - Characterization and measurement of dead layer - Incremental variations in bias setting to optimize configuration - Dead layer is minimized at optimum bias voltage #### Partially Depleted Detector #### **Fully Depleted Detector** #### **Procedure** - Designed and constructed vacuum chamber - Collaborated with a mechanical engineer for custom components - Measured ADC response with nominal reverse bias voltage - Reference measurement - -200 V bias - Alpha particles incident on front of detector - Measured ADC response at 10 V increments - -150 V to -250 V bias - Alpha particles incident on back face of detector AM-241 Source Collimator Si Diode ## **Analysis** - Apply Gaussian fit to each response curve - Only applied around highest peak and falling edge of distribution - Mean of Gaussian - ADC channel of primary α-energy - Front Face - Negligible dead layer - Three main Am-241 peaks are distinct - Back Face - Undefined dead layer - Three main Am-241 peaks are smeared together ADC Channel ## **Linearity of Response** - 24 hr measurement for maximum peak differentiation - Gaussians were fit to three main Am-241 α-peaks - Linear fit applied to the mean values Linear fit is just over one standard deviation from passing through origin $$y = 894(19) \frac{Channels}{MeV} x + 132(106)Channels$$ Channel 0 = 0 MeV Reasonable Approximation! #### Back Face: -150 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 22.69, μ = 4579.40, σ = 30.56 #### **Example of Worst** Sample 5904749 - Back Side: A = 5.94, μ = 2643.90, σ = 280.14 ## Back Face: -160 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 32.69, μ = 4595.64, σ = 28.29 #### **Example of Worst** Sample 5904749 - Back Side: A = 5.07, μ = 3040.00, σ = 258.13 ## Back Face: -170 V Bias ## **Example of Best** Sample 5909704 - Back Side: A = 42.06, μ = 4606.56, σ = 25.55 #### **Example of Worst** Sample 5904749 - Back Side: A = 4.77, μ = 3347.94, σ = 335.57 ## Back Face: -180 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 40.26, μ = 4612.15, σ = 27.67 #### **Example of Worst** Sample 5904749 - Back Side: A = 4.82, μ = 3674.16, σ = 313.38 ## Back Face: -190 V Bias ## **Example of Best** Sample 5909704 - Back Side: A = 42.73, μ = 4616.78, σ = 25.95 #### **Example of Worst** Sample 5904749 - Back Side: A = 5.63, μ = 4105.46, σ = 185.89 ## Back Face: -200 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 43.51, μ = 4619.88, σ = 24.07 #### **Example of Worst** Sample 5904749 - Back Side: A = 8.19, μ = 4395.84, σ = 76.63 ## Back Face: -210 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 42.76, μ = 4621.04, σ = 24.03 #### **Example of Worst** Sample 5904749 - Back Side: A = 13.54, μ = 4493.19, σ = 52.59 ## Back Face: -220 V Bias ## **Example of Best** Sample 5909704 - Back Side: A = 43.87, μ = 4621.27, σ = 24.10 #### **Example of Worst** Sample 5904749 - Back Side: A = 24.68, μ = 4543.95, σ = 33.34 #### Back Face: -230 V Bias ## **Example of Best** Sample 5909704 - Back Side: A = 42.79, μ = 4623.13, σ = 25.76 #### **Example of Worst** Sample 5904749 - Back Side: A = 34.71, μ = 4570.03, σ = 25.87 #### Back Face: -240 V Bias #### **Example of Best** Sample 5909704 - Back Side: A = 43.12, μ = 4626.40, σ = 22.23 #### **Example of Worst** Sample 5904749 - Back Side: A = 43.14, μ = 4577.14, σ = 28.64 #### Back Face: -250 V Bias ## **Example of Best** Sample 5909704 - Back Side: A = 42.76, μ = 4623.42, σ = 25.02 #### **Example of Worst** Sample 5904749 - Back Side: A = 48.84, μ = 4589.64, σ = 24.13 ## Analysis – cont. • ADC gain is calculated from the reference measurement and is simple linear scaling: C^n $f_{gain}^n = \frac{C_{ref}^n}{E_{\alpha}}$ • Gaussian fits for each measurement scaled by the gain: $$E_i^n = C_i^n f_{gain}^n$$ • Energy loss of the α particle: $\varepsilon_i^n = E_\alpha - E_i^n$ • Dead layer thickness is then: $\Delta x_i^n = \frac{\varepsilon_i^n}{dE/dx}$ #### $dE/dx = 0.1336 \, MeV/\mu m$ n = Sample number i = Bias voltage ref = Reference measurement $C_i^n = ADC$ ch. of mean of Gauss. Fit $E_{\alpha} = \text{Energy of primary } \alpha$ E_i^n = Energy of largest peak Δx_i^n = Dead layer thickness dE/dx = Energy loss per distance ## **Optimal Bias Setting Results** - Optimal bias conditions: - Response curve is approximately Gaussian - i.e. minimal tail on distribution - The mean of Gaussian fit stabilizes - Inconsistent optimal bias voltage - Majority of diodes optimally biased to 210 or 220 V - Refutes vendor claim of 200 V - Some required ≥270 V # **Number of Large Diodes per Optimal Bias Setting** ## Dead Layer Results - Small dead layer relative to diode thickness (~1 mm) - Mean = $3.54 \mu m$ for large diodes - Mean = $3.61 \, \mu m$ for small diodes - Surprisingly consistent thicknesses - Large distribution of optimal bias settings - Large variations in response curve shapes below depletion #### Dead Layer #### Conclusions - Dead layers were small and consistent - Diodes have an approximately linear energy response from 0 to 5.5 MeV - Optimal bias setting showed large variation and differed from vendor claims - Did not correlate with dead layer or batch number - Sufficient quantity of diodes were salvaged to meet near future needs - Now have time to find another vendor that can meet requirements # **Thank You** # Backup Slides ## **Experimental Setup** #### **Apparatus** The Am-241 Source (Green) was collimated (Purple) and mounted on a linear actuator Diodes (Blue) were mounted on rotational actuator, which allowed for measuring both sides without breaking vacuum #### **Electronics** Output signal from diodes and a pulser signal were fed into the pre-amp Pulser served as a check for drift in the gain, as well as, an indicator of the inherent noise in the system ## Front Face: -200 V Bias Reference Measurement #### **Sample 5909704** Sample 5909704 - Front Side: A = 103.05, μ = 5046.78, σ = 8.94 #### **Sample 5904749** Sample 5904749 - Front Side: A = 137.48, μ = 5010.61, σ = 6.67 # **Back Face: Dead Layer vs. Bias** #### **Sample 5909704** #### **Sample 5904749** Sample 5904749 - Dead Layer